Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
2.
Lupus Sci Med ; 11(1)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637124

RESUMO

BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Fosfatidilinositol 3-Quinases , Estresse Oxidativo/genética , Aprendizado de Máquina , DNA Helicases , RNA Helicases , Enzimas Multifuncionais
3.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492718

RESUMO

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Assuntos
DNA Primase , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Mutação de Sentido Incorreto , DNA Primase/metabolismo , DNA Primase/química , DNA Primase/genética , Humanos , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/química , Feminino , Replicação do DNA , Modelos Moleculares , Substituição de Aminoácidos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Conformação Proteica , Cristalografia por Raios X , Domínio Catalítico
4.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38348929

RESUMO

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , DNA Primase , Replicação do DNA , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Proteínas de Ligação a Telômeros , Raios Ultravioleta , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA Primase/metabolismo , DNA Primase/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Dano ao DNA
5.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321962

RESUMO

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Assuntos
Dano ao DNA , DNA Polimerase iota , Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Reparo do DNA , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , DNA Primase/metabolismo , DNA Primase/genética , 60555
6.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424450

RESUMO

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Assuntos
Saccharum , Thermoascus , Poligalacturonase/metabolismo , Thermoascus/metabolismo , Celulose , Enzimas Multifuncionais , Saccharum/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
7.
J Mol Biol ; 436(1): 168275, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714300

RESUMO

Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.


Assuntos
DNA Primase , Reparo do DNA , DNA de Cadeia Simples , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Dano ao DNA , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Animais , DNA Primase/metabolismo , Enzimas Multifuncionais/metabolismo
8.
Nucleic Acids Res ; 52(1): 243-258, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971291

RESUMO

The primase/polymerase PRIMPOL restarts DNA synthesis when replication is arrested by template impediments. However, we do not have a comprehensive view of how PRIMPOL-dependent repriming integrates with the main pathways of damage tolerance, REV1-dependent 'on-the-fly' lesion bypass at the fork and PCNA ubiquitination-dependent post-replicative gap filling. Guided by genome-wide CRISPR/Cas9 screens to survey the genetic interactions of PRIMPOL in a non-transformed and p53-proficient human cell line, we find that PRIMPOL is needed for cell survival following loss of the Y-family polymerases REV1 and POLη in a lesion-dependent manner, while it plays a broader role in promoting survival of cells lacking PCNA K164-dependent post-replicative gap filling. Thus, while REV1- and PCNA K164R-bypass provide two layers of protection to ensure effective damage tolerance, PRIMPOL is required to maximise the effectiveness of the interaction between them. We propose this is through the restriction of post-replicative gap length provided by PRIMPOL-dependent repriming.


Assuntos
Dano ao DNA , DNA Primase , DNA Polimerase Dirigida por DNA , Humanos , DNA Primase/genética , DNA Primase/metabolismo , Replicação do DNA , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo
9.
Biochimie ; 217: 10-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37558082

RESUMO

The RNA/DNA helicase senataxin (SETX) has been involved in multiple crucial processes related to genome expression and integrity such us transcription termination, the regulation of transcription-replication conflicts and the resolution of R-loops. SETX has been the focus of numerous studies since the discovery that mutations in its coding gene are the root cause of two different neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and a juvenile form of Amyotrophic Lateral Sclerosis (ALS4). A plethora of cellular phenotypes have been described as the result of SETX deficiency, yet the precise molecular function of SETX as well as the molecular pathways leading from SETX mutations to AOA2 and ALS4 pathologies have remained unclear. However, recent data have shed light onto the biochemical activities and biological roles of SETX, thus providing new clues to understand the molecular consequences of SETX mutation. In this review we summarize near two decades of scientific effort to elucidate SETX function, we discuss strengths and limitations of the approaches and models used thus far to investigate SETX-associated diseases and suggest new possible research avenues for the study of AOA2 and ALS4 pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Doenças Neurodegenerativas/genética , Transcrição Gênica , Mutação , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , RNA
10.
J Neurogenet ; 37(4): 124-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109176

RESUMO

Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resemblance between these disorders, different genes are involved. We report in this study four Tunisian patients belonging to the same large consanguineous family, sharing autosomal recessive cerebellar ataxia phenotypes but with clinical, biological, electrophysiological, and radiological differences leading to the diagnosis of two distinct ARCA caused by two distinct gene defects. Two of our patients presented ataxia with the vitamin E deficiency (AVED) phenotype, and the other two presented ataxia with oculo-motor apraxia 2 (AOA2). Genetic testing confirmed the clinical diagnosis by the detection of a frameshift c.744delA pathogenic variant in the TTPA gene, which is the most frequent in Tunisia, and a new variant c.1075dupT in the SETX gene. In Tunisia, data suggest that genetic disorders are common. The combined effects of the founder effect and inbreeding, added to genetic drift, may increase the frequency of detrimental rare disorders. The genetic heterogeneity observed in this family highlights the difficulty of genetic counseling in an inbred population. The examination and genetic testing of all affected patients, not just the index patient, is essential to not miss a treatable ataxia such as AVED, as in the case of this family.


Assuntos
Ataxia Cerebelar , Ativador de Plasminogênio Tecidual , Deficiência de Vitamina E , Humanos , Ataxia/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/epidemiologia , Consanguinidade , DNA Helicases/genética , Heterogeneidade Genética , Enzimas Multifuncionais/genética , Mutação , RNA Helicases/genética , Ativador de Plasminogênio Tecidual/genética
11.
Biochemistry (Mosc) ; 88(11): 1933-1943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105210

RESUMO

Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at the sites of DNA damage, thus contributing to the DNA damage tolerance. The role of PrimPol in response to the different types of DNA damage is poorly understood. We knocked out the PRIMPOL gene in the lung carcinoma A549 cell line and characterized the response of the obtained cells to the DNA damage caused by hydrogen peroxide, methyl methanesulfonate (MMS), cisplatin, bleomycin, and ionizing radiation. The PRIMPOL knockout reduced the number of proliferating cells and cells in the G2 phase after treatment with MMS and caused a more pronounced delay of the S phase in the cisplatin-treated cells. Ionizing radiation at a dose of 10 Gy significantly increased the content of apoptotic cells among the PRIMPOL-deficient cells, while the proportion of cells undergoing necroptosis increased in both parental and knockout cells at any radiation dose. The viability of PRIMPOL-deficient cells upon the hydrogen peroxide-induced oxidative stress increased compared to the control cells, as determined by the methyl tetrazolium (MTT) assay. The obtained data indicate the involvement of PRIMPOL in the modulation of adaptive cell response to various types of genotoxic stress.


Assuntos
Adenocarcinoma de Pulmão , DNA Polimerase Dirigida por DNA , Humanos , DNA Polimerase Dirigida por DNA/metabolismo , Células A549 , Cisplatino/farmacologia , Peróxido de Hidrogênio/farmacologia , Replicação do DNA , Dano ao DNA , Adenocarcinoma de Pulmão/genética , DNA Primase/genética , DNA Primase/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo
13.
J Mol Neurosci ; 73(11-12): 996-1009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982993

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, uncurable neurodegenerative disorder characterized by the degradation of motor neurons leading to muscle impairment, failure, and death. Senataxin, encoded by the SETX gene, is a human helicase protein whose mutations have been linked with ALS onset, particularly in its juvenile ALS4 form. Using senataxin's yeast homolog Sen1 as a model for study, it is suggested that senataxin's N-terminus interacts with RNA polymerase II, whilst its C-terminus engages in helicase activity. Senataxin is heavily involved in transcription regulation, termination, and R-loop resolution, enabled by recruitment and interactions with enzymes such as ubiquitin protein ligase SAN1 and ribonuclease H (RNase H). Senataxin also engages in DNA damage response (DDR), primarily interacting with the exosome subunit Rrp45. The Sen1 mutation E1597K, alongside the L389S and R2136H gain-of-function mutations to senataxin, is shown to cause negative structural and thus functional effects to the protein, thus contributing to a disruption in WT functions, motor neuron (MN) degeneration, and the manifestation of ALS clinical symptoms. This review corroborates and summarizes published papers concerning the structure and function of senataxin as well as the effects of their mutations in ALS pathology in order to compile current knowledge and provide a reference for future research. The findings compiled in this review are indicative of the experimental and therapeutic potential of senataxin and its mutations as a target in future ALS treatment/cure discovery, with some potential therapeutic routes also being discussed in the review.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Neurônios Motores/metabolismo , Regulação da Expressão Gênica , Mutação , DNA Helicases/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo
14.
J Mol Biol ; 435(24): 168338, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923120

RESUMO

To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol's active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol's catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the 'choreography' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.


Assuntos
Domínio Catalítico , Replicação do DNA , DNA Polimerase Dirigida por DNA , Humanos , DNA Primase/metabolismo , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Nucleotídeos
15.
Acta Neuropathol Commun ; 11(1): 164, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845749

RESUMO

Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Animais , Esclerose Amiotrófica Lateral/metabolismo , Dipeptídeos/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Drosophila/metabolismo , RNA/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética
16.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832548

RESUMO

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , RNA , Humanos , RNA/genética , Microscopia Crioeletrônica , RNA Helicases/genética , RNA Helicases/química , Enzimas Multifuncionais/genética , DNA/genética , Homeostase , DNA Helicases/genética
17.
Cells ; 12(18)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759541

RESUMO

Karyomegalic interstitial nephritis (KIN) is a genetic kidney disease caused by mutations in the FANCD2/FANCI-Associated Nuclease 1 (FAN1) gene on 15q13.3, which results in karyomegaly and fibrosis of kidney cells through the incomplete repair of DNA damage. The aim of this study was to explore the possibility of using a human induced pluripotent stem cell (hiPSC)-derived kidney organoid system for modeling FAN1-deficient kidney disease, also known as KIN. We generated kidney organoids using WTC-11 (wild-type) hiPSCs and FAN1-mutant hiPSCs which include KIN patient-derived hiPSCs and FAN1-edited hiPSCs (WTC-11 FAN1+/-), created using the CRISPR/Cas9 system in WTC-11-hiPSCs. Kidney organoids from each group were treated with 20 nM of mitomycin C (MMC) for 24 or 48 h, and the expression levels of Ki67 and H2A histone family member X (H2A.X) were analyzed to detect DNA damage and assess the viability of cells within the kidney organoids. Both WTC-11-hiPSCs and FAN1-mutant hiPSCs were successfully differentiated into kidney organoids without structural deformities. MMC treatment for 48 h significantly increased the expression of DNA damage markers, while cell viability in both FAN1-mutant kidney organoids was decreased. However, these findings were observed in WTC-11-kidney organoids. These results suggest that FAN1-mutant kidney organoids can recapitulate the phenotype of FAN1-deficient kidney disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefrite Intersticial , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Rim/metabolismo , Endonucleases , Organoides/metabolismo , Enzimas Multifuncionais
18.
J Exp Clin Cancer Res ; 42(1): 248, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749638

RESUMO

BACKGROUND: The most common site of metastasis in colorectal cancer (CRC) is the liver and liver metastases occur in more than 50% of patients during diagnosis or treatment. The occurrence of metastasis depends on a series of events known as the invasive-metastasis cascade. Currently, the underlying genes and pathways regulating metastasis initiation in the liver microenvironment are unknown. METHODS: We performed systematic CRISPR/Cas9 screening using an in vivo mouse model of CRC liver metastasis to identify key regulators of CRC metastasis. We present the full results of this screen,which included a list of genes that promote or repress CRC liver colonization. By silencing these genes individually, we found that chondroitin sulfate synthase 1 (CHSY1) may be involved in CRC metastasis. We verified the function of CHSY1 and its involvement in liver metastasis of CRC through in vivo and in vitro experiments. RESULT: The results of TCGA and CRISPR/Cas9 showed that CHSY1 was overexpressed in CRC primary and liver metastasis tissues and indicated a worse clinical prognosis. In vitro and in vivo experiments confirmed that CHSY1 facilitated the liver metastasis of CRC and CHSY1 induced CD8+ T cell exhaustion and upregulated PD-L1 expression. The metabolomic analysis indicated that CHSY1 promoted CD8+ T cell exhaustion by activating the succinate metabolism pathway leading to liver metastasis of CRC. Artemisinin as a CHSY1 inhibitor reduced liver metastasis and enhanced the effect of anti-PD1 in CRC. PLGA-loaded Artemisinin and ICG probe reduced liver metastasis and increased the efficiency of anti-PD1 treatment in CRC. CONCLUSION: CHSY1 could promote CD8+ T cell exhaustion through activation of the succinate metabolic and PI3K/AKT/HIF1A pathway, leading to CRC liver metastasis. The combination of CHSY1 knockdown and anti-PD1 contributes to synergistic resistance to CRC liver metastasis. Artemisinin significantly inhibits CHSY1 activity and in combination with anti-PD1 could synergistically treat CRC liver metastases. This study provides new targets and specific strategies for the treatment of CRC liver metastases, bringing new hope and benefits to patients.


Assuntos
Artemisininas , Neoplasias Colorretais , Neoplasias Hepáticas , N-Acetilgalactosaminiltransferases , Humanos , Animais , Camundongos , Detecção Precoce de Câncer , Sistemas CRISPR-Cas , Fosfatidilinositol 3-Quinases , Exaustão das Células T , Neoplasias Hepáticas/genética , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Microambiente Tumoral , Glucuronosiltransferase , Enzimas Multifuncionais
19.
Elife ; 122023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668474

RESUMO

The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism, especially DNA damage response. The N-terminal OB domain of the RPA70 subunit (RPA70N) is a major protein-protein interaction element for RPA and binds to more than 20 partner proteins. Previous crystallography studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to amphipathic peptides that mimic ssDNA. NMR chemical-shift studies also provided valuable information on the interaction of RPA70N residues with target sequences. However, it is still unclear how RPA70N recognizes and distinguishes such a diverse group of target proteins. Here, we present high-resolution crystal structures of RPA70N in complex with peptides from eight DNA damage response proteins. The structures show that, in addition to the ssDNA mimicry mode of interaction, RPA70N employs multiple ways to bind its partners. Our results advance the mechanistic understanding of RPA70N-mediated recruitment of DNA damage response proteins.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteína de Replicação A , Humanos , Cristalografia , Dano ao DNA , DNA Primase , DNA Polimerase Dirigida por DNA , Eucariotos , Enzimas Multifuncionais
20.
Biochemistry (Mosc) ; 88(8): 1139-1155, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758313

RESUMO

Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.


Assuntos
DNA Primase , DNA Polimerase Dirigida por DNA , Humanos , DNA Primase/genética , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA/metabolismo , Dano ao DNA , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...